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Abstract The goal of this tutorial is to give a first introduction to Markov
chain methods. This powerful probability tool in operations research will be
illustrated with the game of Egg Russian Roulette and Google’s Page-Rank
search algorithm among others.

1. Introduction

A gem for teaching Markov chains to beginning students is the game of Egg
Russian Roulette. This game was played for several years in The Tonight
Show with Jimmy Fallon. In this show Jimmy plays the Egg Russian Roulette
game with a guest of the show. The guest was always a celebrity from sports
or film: Tom Cruise, Anna Kendrick, Jodie Foster, David Beckham, to name
a few. The guest and Jimmy take turns picking an egg from a carton and
smashing it on their heads. The carton contains a dozen eggs, four of which
are raw and the rest are boiled. Neither Jimmy nor the guest knows which
eggs are raw and which are boiled. The first person who has cracked two raw
eggs on their head loses the game.

The entertainment value of seeing famous people with raw yolk and al-
bumin running down their hair and faces made the game very popular. Inci-
dentally, the origin of the game has a rich history, dating back to the Middle
Ages. In the rural English hamlet of Swaton (184 inhabitants, currently),
the throwing of eggs started around 1322 when the new abbot of the town,
who owned all of the poultry, handed out eggs to loyal churchgoers as alms.
Whenever the church was cut-off from the rest of the hamlet by the sometimes
overflowing local river, the eggs were chucked to the churchgoers waiting on
the other side of this watercourse. Recently, this tradition has been slightly
adapted and restored: every year since 2006, this little village hosts a world
championship of Russian Egg Roulette, which attracts contestants from all
over the world.

Let’s go back to Jimmy Fallon’s Tonight Show. In the show, the guest is
the first to choose an egg. Do you think each player has the same probability
of losing the game? Does the guest of the show has an advantage because
there are more hard boiled eggs to select from at the start? To answer these

1This tutorial is largely based on the book Henk Tijms, Basic Probability, What Every
Math Student Should Know, second edition, World Scientific Press, 2021.

2The author is emeritus professor of operations research at the Vrije University in
Amsterdam, email: h.c.tijms@xs4all.nl.
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questions, the method of absorbing Markov chains will be used. This method
essentially boils down to the use of conditional probabilities and matrix cal-
culations. In some intermediate situations arising during the course of the
game the probability of the guest of losing the game can be calculated by a
simple argument. Suppose that Jimmy and the guest have each smashed one
raw egg on their heads. Then, for i = 2, . . . , 10, let gi be the probability of
the guest losing the game when i eggs are left in the carbon. In other words,
gi is the probability that the guest will pick as first a second raw egg when
i− 2 boiled eggs and 2 raw eggs are left in the carbon. If i is even, the next
egg will be picked by the guest; otherwise the host Jimmy picks the next egg.
Therefore

g2 = 1.

The other gi can be recursively computed from

gi =
i− 2

i
× gi−1 for i = 3, 5, 7, and 9

gi =
2

i
+

i− 2

i
× gi−1 for i = 4, 6, 8, and 10.

These equations are easily explained. For i odd, the guest loses the game only
if Jimmy picks a boiled egg from the i eggs left in the carbon and the guest
picks as first a raw egg from the remaining i− 1 eggs. The joint probability
of these two events is i−2

i
multiplied by gi−1. For i even, the probability of

the guest losing the game is the sum of the probability of the event that
the guest picks directly a raw egg from the carton with i eggs left and the
probability of the event that the guest picks a boiled egg from the carbon
with i eggs left and loses in the remainder of the game with i − 1 eggs left
in the carbon. The first event has probability 2

i
and the second event has

probability i−2
i

× gi−1. Starting the recursive calculation with g2 = 1, you
obtain from the recursion equations

g2 = 1, g3 =
1

3
, g4 =

2

3
, g5 =

2

5
, g6 =

3

5
, g7 =

3

7
, g8 =

4

7
, g9 =

4

9
, g10 =

5

9
.

In order to solve the general problem of Egg Russian Roulette, it is helpful
to use Markov chains. This will be the subject of the next section.

2. A Primer on Markov chains

Markov chains represent the most important stochastic process in probabil-
ity. This section gives a first impression of the fascinating world of Markov
chains. This branch of probability was founded by the Russian mathemati-
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cian A.A. Markov (1856–1922) at the beginning of the 20th century.3 Before
Markov the theory of probability involved observing a series of events that
were independent of each other. The classic examples are coin-flipping and
dice-rolling. Markov added the idea of interdependence to probability, the
notion that what happens next is linked to what is happening now. In his
famous 1913 lecture for the Imperial Academy of Sciences in St. Peters-
burg, Markov used this notion to analyze the frequencies at which vowels
and consonants occur in Pushkin’s novel “Eugene Onegin.” Markov’s model
is a very versatile probability model that is used today in countless applica-
tions in many different areas, such as voice recognition, DNA analysis, stock
control, telecommunications and a host of others. Markov chains are every-
where in science today.

A Markov chain can be seen as a dynamic stochastic process that ran-
domly moves from state to state with the property that only the current state
is relevant for the next state. In other words, the memory of the process goes
back only to the most recent state. A picturesque illustration of this would
show the image of a frog jumping from lily pad to lily pad with appropri-
ate transition probabilities that depend only on the position of the last lily
pad visited. In order to plug a specific problem into a Markov chain model,
the state variable(s) should be appropriately chosen in order to ensure the
characteristic memoryless property of the process. The basic steps of the
modeling approach are:

• Choosing the state variable(s) such that the current state summarizes
everything about the past that is relevant to the future states.

• The specification of the one-step transition probabilities of moving from
state to state in a single step.

Using the concept of state and choosing the state in an appropriate way,
surprisingly many probability problems can be solved within the framework

3Markov lived through a period of great political activity in Russia and, having firm
opinions, he became heavily involved. Maksim Gorky, the Russian short-story writer,
novelist and left wing activist, was elected a member of the Russian Academy of Sciences
in 1902, but his election was soon withdrawn for political reasons on the Tsar’s orders.
Markov protested strongly and refused to accept honours awarded him on the following
year. In June 1907 Tsar Nicholas dissolved the Second Duma which had been elected with
majority on the left. Markov repudiated his membership and might have expected to suffer
severe consequences but the authorities chose not to make an example of an elderly and
distinguished mathematician. In 1913 the Romanov dynasty, which had been in power
in Russia since 1613, celebrated their 300 years of power. This was not likely to improve
their already weak position. Markov showed his disapproval of the celebration but holding
celebrations of his own - he celebrated 200 years of the Law of Large Numbers!
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of a Markov chain. The set of states is denoted by I and is assumed to be
finite. The one-step transition probabilities are denoted by:

pij = the probability of going from state i to state j in one step

for i, j ∈ I. The one-step probabilities must satisfy

pij ≥ 0 for all i, j ∈ I and
∑
j∈I

pij = 1 for all i ∈ I.

It is convenient to summarize the one-step transition probabilities in a ma-
trix P having pij as its (i, j)th element.

In Markov chains a key role is played by the n-step transition probabili-
ties. For any n = 1, 2, . . ., these probabilities are defined as

p
(n)
ij = the probability of going from state i to state j in n steps

for all i, j ∈ I. Note that p
(1)
ij = pij. How to calculate the n-step transition

probabilities? It will be seen that they can be calculated by matrix products.
This key fact is based on the so-called Chapman–Kolmogorov equations

p
(n)
ij =

∑
k∈I

p
(n−1)
ik pkj for all i, j ∈ I and n = 2, 3, . . . .

This recurrence relation can be seen by noting that the probability of going
from state i to state j in n steps is obtained by summing the probabilities
of the mutually exclusive events of going from state i to some state k in the
first n− 1 steps and then going from state k to state j in the nth step.

An extremely useful observation is that the n-step transition probabilities
p
(n)
ij can be calculated by multiplying the matrix P of one-step transition
probabilities by itself n times. Let’s verify this for n = 2. Then,

p
(2)
ij =

∑
k∈I

pikpkj for all i, j ∈ I.

This is the definition for the elements of the matrix product P × P = P2.
The argument can be extended to conclude that for any n ≥ 1 and i, j ∈ I:

p
(n)
ij = the (i, j)th element of the n-fold matrix product Pn.

This is a very important conclusion: many computations for finite-state
Markov chains can be boiled down to matrix calculations!
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Absorbing Markov chains

Many applied probability problems can be analyzed by using an absorbing
Markov chain with an appropriate choice of the state variable(s). A Markov
chain is said to be absorbing if there are one or more states i with pii = 1 and
thus pij = 0 for j ̸= i. That is, once the process is in an absorbing state it
always stays there. We give two examples of absorbing Markov chains before
we apply this concept to solve the Egg Russian Roulette problem.

Desperate Joe goes for roulette

An instructive example of an absorbing Markov chain is the following random-
walk type of problem. Joe Dalton desperately wants to raise his bankroll of
$600 to $1,000 in order to pay his debts before midnight; otherwise he will
get into big trouble with a loan shark. He enters a casino to play European
roulette. He decides to bet on red each time using bold play, that is, Joe bets
either his entire bankroll or the amount needed to reach the target bankroll,
whichever is smaller. Thus the stake is $200 if his bankroll is $200 or $800
and the stake is $400 if his bankroll is $400 or $600. In European roulette a
bet on red is won with probability 18

37
and is lost with probability 19

37
. What

is the probability that Joe will reach his goal?
To solve Joe’s problem, take a Markov chain with six states i = 0, 1, . . . , 5,

where state i means that Joe’s bankroll is i× 200 dollars. The states 0 and
5 are absorbing and the game is over as soon one of these states is reached.
Thus p00 = p55 = 1. The other pij are easily found. For example, the only
possible one-step transitions from state i = 2 are to the states 0 and 4, be-
cause Joe bets $400 in state 2. Thus p20 = 19

37
and p24 = 18

37
. The other pij

are given in the following matrix P of one-step transition probabilities:



from\to 0 1 2 3 4 5

0 1 0 0 0 0 0
1 19

37
0 18

37
0 0 0

2 19
37

0 0 0 18
37

0
3 0 19

37
0 0 0 18

37

4 0 0 0 19
37

0 18
37

5 0 0 0 0 0 1

.

For any starting state, the process will ultimately absorbed in either state 0
or state 5. The absorption probabilities can be obtained by calculating Pn

for n sufficiently large. Trying several values of n, it was found that n = 20
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is large enough to have convergence of all p
(n)
ij in four or more decimals:

P20 = P21 = . . . =


1 0 0 0 0 0
0.8141 0 0 0. 0 0.1859
0.6180 0 0 0 0 0.3820
0.4181 0 0 0 0 0.5819
0.2147 0 0 0 0 0.7853
0 0 0 0 0 1

 .

You read off from row 4 that the probability of Joe reaching his goal when
starting with $600 is equal to

p
(20)
35 = p

(21)
35 = . . . = 0.5819.

This probability is the maximum probability for Joe of reaching the goal of
getting $1000. The intuitive explanation that bold play is optimal in Joe’s
situation is that the shorter Joe exposes his bankroll to the casino’s house
advantage, the better it is (e.g., if Joe bets $50 each time, he reaches his goal
with probability 0.4687, and with probability 0.2917 if each bet is for $20).

Alternatively, the win probability 0.5819 can be calculated by solving
four linear equations. To do so, define fi as the probability of ever getting
absorbed in state 5 when the starting state is i. By definition, f0 = 0 and
f5 = 1. By conditioning on the next state after state i and using the law of
conditional probability, you get the four linear equations

f1 =
19

37
× 0 +

18

37
f2, f2 =

19

37
× 0 +

18

37
f4,

f3 =
19

37
f1 +

18

37
× 1, f4 =

19

37
f3 +

18

37
× 1.

The solution of these equations is f1 = 0.1859, f2 = 0.3820, f3 = 0.5819, and
f4 = 0.7853. The same solution as found by matrix multiplication.

A similar set of linear equations can be used to calculate E(N), where the
random variable N is the number of bets made by Joe. To do so, parametrize
again and define ei as the expected value of the number of bets when the
starting state is i. By definition, e0 = e5 = 0. By conditioning on the next
state after state i and using the law of conditional expectation, you get

e1 = 1 +
19

37
× e0 +

18

37
× e2, e2 = 1 +

19

37
× e0 +

18

37
× e4,

e3 = 1 +
19

37
× e1 +

18

37
× e5, e4 = 1 +

19

37
× e3 +

18

37
× e5.

The solution of these linear equations is e1 = 1.9675, e2 = 1.9887, e3 =
2.0323, and e4 = 2.0103. Thus E(N) = 2.0323.
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Another nice example of an absorbing Markov chain is provided by the
episode Glass Stepping Stones in the 2021 Netflix series of Squid Game.

The deadly glass bridge game

The squid game is one of the most watched series in Netflix. In an insanely
sadistic rat race − based on old-fashioned children’s games − a few hun-
dred downtrodden people are given the chance to still make something of
their lives. The blood-curdling episode ’glass stepping stones’ of the origi-
nally Korean series is about 16 players crossing a floating bridge of 18 steps,
see https://www.youtube.com/watch?v=19oFNytu0z0. For each step, the
player has a choice to pick the left pane or the right pane. One of these two
panes is of tempered glass, capable of supporting the weight of a person, and
the other of normal glass, which breaks when stepped on. It is impossible
to see the difference between the panes of tempered glass and normal glass,
which are randomly assigned to the steps. Sixteen players will try to cross
the bridge one after the other, choosing one of the two panes at each step.
The bad news is that if a player jumps onto a panel with normal glass, the
glass breaks and the player tumbles down, resulting in death. The good
news is that the sacrifice was not in vain, because the broken panel gives all
remaining players valuable information about what the right path to safety
is. Furthermore, it is assumed that each player also knows the safe panels
chosen by previous players. In sequence, each player attempts to cross the
bridge and keeps moving until the player has either successfully crossed all 18
steps on the bridge or has tumbled down in between. What is the expected
number of survivors, what is the probability of survival for each player, and
what is the probability distribution of the number of survivors?

To answer these questions, consider an absorbing Markov with 20 states
i = 0, 1, . . . , 18, 19. State i with 1 ≤ i ≤ 18 means that the game has moved
forward to step i where a player jumped on normal glass and was eliminated,
state 19 means that a player has safely reached the final step 18, and state 0 is
an auxiliary state corresponding to the beginning of the game. State 19 is the
absorbing state of the Markov chain, that is, p19,19 = 1. For i = 0, 1, . . . , 18,
the one-step transition probabilities are

pij =
(1
2

)j−i

for j = i+ 1, .., 18 and pi,19 =
(1
2

)18−i

.

The other pij are 0. You calculate the matrix products Pk for k = 1, . . . , 16.
Let ak be the probability that player k survives and dk be the probability
that exactly k players survive for k = 0, 1, . . . , 16. Then

ak = p
(k)
0,19 for k = 1, 2, . . . , 16,
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and so ak is given by the (0, 19)th element of Pk. The dj’s can next be
calculated from

d16−k+1 = ak − ak−1 for k = 1, 2, . . . , 16,

where a0 = 0. The explanation is that ak also gives the probability that
16−k+1 or more players survive, because each player knows what panes were
chosen by the previous players and so, if player k crosses safely the bridge,
any player behind player k crosses safely the bridge. Thus the probability
that the total number of survivors is exactly equal to 16− k + 1 is obtained
by subtracting the probability ak−1 from the probability ak. Of course, the
probability d0 is 1−

∑16
k=1 dk. The expected value of the number of survivors

can be calculated as
∑16

k=1 k dk. The matrix calculations lead to

a1 = 0.000, a2 = 0.000, a3 = 0.001, a4 = 0.004, a5 = 0.015, a6 = 0.048,

a7 = 0.119, a8 = 0.240, a9 = 0.407, a10 = 0.593, a11 = 0.760,

a12 = 0.881, a13 = 0.952, a14 = 0.985, a15 = 0.996, a16 = 0.999.

The expected value of the number of survivors is 7.000076 , a value very close
to 7 (in the Netflix episode the actual number of survivors was 3, a remarkably
small number of survivors in the light of d0+d1+d2+d3 = 0.047). The value
7 is obtained by the following heuristic argument: if the number of steps is
large enough, the number of panes ’unlocked’ by a player is approximately
geometrically distributed with parameter 1

2
and expected value 2, and this

makes it plausible that on average about 9 players have to be sacrificed in
order for the remaining 16− 9 = 7 players to cross the bridge safely.

A true slaughter of the players would have been the case if the players
could only have seen the broken panels and had no further information.
Simulation seems the only practical approach for the probabilistic analysis
of this variant. One hundred thousand simulation runs give the estimate 0.24
for the expected number of survivors and the estimate 0.11 for the probability
of the last player surviving.4

3. Markov chain analysis for Egg Russian Roulette

An absorbing Markov chain is used to analyze the game of Egg Russian
Roulette. The state of the Markov chain is described by the triple (i, r1, r2),
where i denotes the number of smashed eggs, r1 is the number of raw eggs

4In support of this result, Ad Ridder pointed out to me: the probability that the first
15 players do not survive is (1− ( 12 )

18)× (1− ( 12 )
17)× · · · × (1− ( 12 )

4) = 0.8801, and so a
lower bound for P (last player survives) is ( 12 )

3× 0.8801 = 0.110. In the same way, a lower
bound for P (second last player survives) is ( 12 )

4 × 0.9388 = 0.059, etc.
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picked by the guest and r2 is the number of raw eggs picked by the host of
the game. The states satisfy 0 ≤ i ≤ 11 and r1 + r2 ≤ 3. The process starts
in state (0, 0, 0) and ends when one of the absorbing states (i, 2, 0), (i, 2, 1),
(i, 0, 2), or (i, 1, 2) is reached. The guest loses the game if the game ends
in a state (i, 2, 0) or (i, 2, 1) with i odd. In a non-absorbing state (i, r1, r2)
with i even, the guest picks an egg and the process goes either to state (i+
1, r1+1, r2) with probability 4−r1−r2

12−i
or to state (i+1, r1, r2) with probability

1− 4−r1−r2
12−i

. In a non-absorbing state (i, r1, r2) with i odd, the host picks an
egg and the process goes either to state (i + 1, r1, r2 + 1) with probability
4−r1−r2
12−i

or to state (i + 1, r1, r2) with probability 1 − 4−r1−r2
12−i

. This sets the
matrix P of one-step transition probabilities. The probability that the guest
will lose can be computed by calculating P11. This requires that the states
are ordered in a one-dimensional array. It is easier to use a recursion to
calculate the probability of the guest losing the game. For that, you reason
in the same way as in the above gambling problem. For any state (i, r1, r2),
let p(i, r1, r2) be the probability that the guest will lose if the process starts in
state (i, r1, r2). The sought probability p(0, 0, 0). The sought probability can
be calculated by a recursion with the boundary conditions can be calculated
by a recursion with the boundary conditions p(i, 2, 0) = p(i, 2, 1) = 1 and
p(i + 1, 0, 2) = p(i + 1, 1, 2) = 0 for i = 3, 5, 7, 9 and 11. The recursive
calculations are

p(i, r1, r2)=
4−r1−r2
12− i

p(i+ 1, r1 + 1, r2) +
(
1− 4−r1−r2

12− i

)
p(i+ 1, r1, r2)

for i = 0, 2, 4, 6, 8 and 10, and

p(i, r1, r2)=
4−r1−r2
12− i

p(i+ 1, r1, r2 + 1) +
(
1− 4−r1−r2

12− i

)
p(i+ 1, r1, r2)

for i = 1, 3, 5, 7, 9 and 11. The recursive computations lead to the value 5
9
for

the probability that the guest of the show will lose the game. Interestingly
enough, the game turns out to be fair for the case of three raw eggs and
nine boiled eggs. For the case of five raw eggs and seven boiled eggs, the
guest will lose with probability 0.563. Similar recursive computations give
that the expected number of trials has the values 8.41, 6.86 and 5.73 for the
respective cases of three, four and five raw eggs. All of these results might also
be verified by computer simulation – a Python program is easily written. In
fact, simulations of the problem are provided by the videos online of episodes
of Egg Russian Roulette in The Tonight Show by Jimmy Fallon, with Higgins
as unsurpassed sidekick with his characteristically shrill voice, reminiscent of
the character Igor from the parody movie Young Frankenstein. In the 18
episodes I found on Internet the guest lost 9 times the game. Remarkably,
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the experimental probability of 50% resulting from this very small sample
size is not far away from the theoretical probability of 55.6%.

4. Long-run behavior of Markov chains

Let’s consider a Markov chain with no absorbing states. What about the
probability distribution of the state after many, many transitions? Does the
effect of the starting state ultimately fade away? To answer these questions,
the following assumption is made:

(a) There is a state s that can be reached from any other state, that is, for

any state j there is some n ≥ 1 such that p
(n)
js > 0.

(b) The set of states cannot be split into multiple disjoint sets S1, . . . , Sd

with d ≥ 2 such that a one-step transition from a state in Sk is always to a
state in Sk+1, where Sd+1 = S1.

The condition (a) is satisfied in nearly any application, but this is not the
case for condition (b). The condition (b) rules out periodicity in the state
transitions, as in the example of the three-state Markov chain with p12 =
p13 = 0.5, p21 = p31 = 1, and pij = 0 otherwise. In this example d = 2 with

S1 = {1} and S2 = {2, 3}, and so limn→∞ p
(n)
ij does not exist for any i, j, e.g.

p
(n)
11 is 1 for n even and 0 for n odd.
Under the conditions (a) and (b), it can be shown that the limiting

probability (or equilibrium probability)

πj = lim
n→∞

p
(n)
ij

exists for all i, j ∈ I and is independent of the starting state i. The πj can
be calculated as the unique solution to the balance equations

πj =
∑
k∈I

pkjπk for j ∈ I

together with the normalization equation
∑

j∈I πj = 1 (you can delete one
arbitrarily chosen balance equation as a redundant equation in order to get
a square system of linear equations). The balance equations can be easily

explained from the Chapman-Kolmogorov equations p
(n)
ij =

∑
k∈I p

(n−1)
ik pkj.

Letting n → ∞ in both sides of these equations and interchanging limit and
summation (justified by the finiteness of I), you get the balance equations.

The probability πj can be interpreted as the probability of finding the Markov
chain in state j many, many transitions later, whatever the current state is.
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This interpretation is obvious. Another interpretation that is more useful for
practical purposes is the following:

the long-run proportion of times the Markov chain will visit state j

=πj with probability 1,

independently of the starting state.5 This is a kind of large numbers for
Markov chains.

As an illustration, consider the following example. On the Island of Hope
the weather each day is classified as sunny, cloudy, or rainy. The next day’s
weather depends only on today’s weather and not on the weather of the
previous days. If the present day is sunny, the next day will be sunny, cloudy,
or rainy with probabilities 0.70, 0.10, and 0.20. The transition probabilities
for the weather are 0.50, 0.28, and 0.22 when the present day is cloudy and
they are 0.40, 0.30, and 0.30 when the present day is rainy. What are the
proportions of sunny days, cloudy days and rainy days over the long run?

This question can be answered by using a three-state Markov chain. Let’s
say that the weather is in state S if it is sunny, in state C if it is cloudy and
in state R if it is rainy. The evolution of the weather is described by a
Markov chain with state space I = {S,C,R}. The matrix P of the one-step
transition probabilities of this Markov chain is given by


from\to S C R

S 0.70 0.10 0.20
C 0.50 0.28 0.22
R 0.40 0.30 0.30

.

In the context of this weather problem, it will be intuitively clear that the
effect of the starting state ultimately fades away and that the limiting prob-
abilities also give the proportions of sunny days, cloudy days and rainy days
over the long run. Solving the two balance equations

πS = 0.70πS + 0.50πC + 0.40πR

πC = 0.10πS + 0.28πC + 0.30πR

together with the normalization equation πS + πC + πR = 1 gives that the
long-run proportions of sunny days, cloudy days and rainy days are equal to
πS = 0.5967, πC = 0.1771 and πR = 0.2262. Alternatively, these probabilities

5The balance equations also apply when the aperiodicity condition (b) is not satisfied,
in which case πj can only be interpreted as the long-run average number of visits per unit
time to state j.
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can be estimated by calculating Pn for sufficiently large n. Trying several
values of n, it was found that n = 7 matrix multiplications suffice to have
that the elements of the matrix P7 agree row-to-row to four decimal places:

Pn =

 0.5967 0.1771 0.2262
0.5967 0.1771 0.2262
0.5967 0.1771 0.2262

 for all n ≥ 7.

The Page-Rank algorithm in Google search

The Page-Rank algorithm devised by Larry Page and Sergey Brin, the founders
of Google, is based on a Markov chain whose states are the pages of the World
Wide Web. This algorithm is one of the methods Google uses to determine
a page’s relevance or importance. A rudiment of the algorithm will be dis-
cussed. Suppose that you have n interlinked web pages. Let nj be the number
of outgoing links on page j. It is assumed that nj > 0 for all j. Let α be a
given number with 0 < α < 1. Imagine that a random surfer jumps from his
current page by choosing with probability α a random page amongst those
that are linked from the current page, and by choosing with probability 1−α
a completely random page. Hence the random surfer jumps around the web
from page to page according to a Markov chain with the one-step transition
probabilities

pjk = α rjk + (1− α)
1

n
for j, k = 1, . . . , n,

where rjk = 1
nj

if page k is linked from page j and rjk = 0 otherwise. The

parameter α was originally set to 0.85. The inclusion of the term (1− α)/n
can be justified by assuming that the random surfer occasionally gets bored
and then randomly jumps to any page on the web. Since the probability
of such a jump is rather small, it is reasonable that it does not influence
the ranking very much. By the term (1 − α)/n in the pjk, the Markov
chain satisfies the conditions (a) and (b). Thus the Markov chain has a
unique equilibrium distribution {πj}. These probabilities can be estimated
by multiplying the matrix P of one-step transition probabilities by itself
repeatedly (the computational effort can be considerably reduced by using

the trick Pm = P
1
2
m ×P

1
2
m for m = 2n). Because of the constant (1− α)/n

in the matrix P, things mix better up so that the n-fold matrix product Pn

converges very quickly to its limit. The equilibrium probability πj gives us
the long-run proportion of time that the random surfer will spend on page j.
If πj > πk, then page j is more important than page k and should be ranked
higher.
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