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Abstract The goal of this tutorial is to give a first introduction to the
Kelly betting system and to the Kuhn-Tucker conditions in nonlinear pro-
gramming. The Kelly system is often used in the fields of gambling and
investing, which fields have many similar traits. The formula will be derived
both for the case of a single betting object and for the case of multiple betting
objects, where the derivation for the latter case is based on the Kuhn-Tucker
conditions from nonlinear programming. An elementary treatment of these
famous conditions will be given in the Appendix of the article. The Kelly
formula will be illustrated with betting examples from investment, soccer
and horse races.

1. Introduction

In his book A Mathematician Plays the Stock Market, John Allen Paulos
describes a scenario that occurred during the wild times when dotcom com-
panies were going public on a daily basis. A certain investor is offered the
following opportunity: Every Monday for a period of 52 weeks the investor
may invest funds in the stock of one dotcom company. On the ensuing Fri-
day, the investor sells. The following Monday, he purchases new stock in
another dotcom company. Each week, the value of the stock purchased has
a probability of 1

2 of increasing by 80%, and a probability of 1
2 of decreasing

by 60%, independently of what happened in previous weeks. This means
that on average, the increase in value of the purchased stock is equal to

0.8× 1

2
− 0.6× 1

2
= 0.1,

giving an average return of 10% per week. The investor, who has a starting
bankroll of ten thousand dollars to invest over a period of the coming 52
weeks, doesn’t hesitate for a moment; he decides to invest the full amount,
every week, in the stock of a dotcom company. After 52 weeks, it appears
that our investor only has 2 dollars left of his initial ten-thousand-dollar
bankroll. He is, quite literally, at a loss to figure it all out. But in fact, this
investment result is not very surprising when you consider how dangerous
it is to rely on averages in situations involving uncertainty. A person can
drown, after all, in a lake that has an average depth of 25 cm. For situations
involving uncertainty factors, you should never work with averages, but
rather with probabilities! It is easily explained that the probability of nearly
depleting the bankroll is large if the investor invests his whole bankroll in
each transaction. The most likely path to develop over the course of 52

1Henk Tijms is emeritus professor of operations research at the Vrije University in
Amsterdam, email: h.c.tijms@xs4all.nl.
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weeks is one in which the stock increases in value 50% of the time, and
decreases in value 50% of the time. This path results in a bankroll of 1.826×
0.426×10 000 = 1.95 dollars after 52 weeks. Running one hundred thousand
simulations of the investments over 52 weeks renders a probability of about
50% that the investor’s final bankroll will not exceed 1.95 dollars, and a
small probability of 5.8% that the investor’s final bankroll will be greater
than his starting bankroll of ten thousand dollars.

Misled by seemingly favorable averages, our foolhardy investor stakes
the full amount of his bankroll every week. Apparently, he is unacquainted
with the Kelly strategy. According to this strategy, rather than investing
the full amount of his current bankroll for every transaction, he would do
better to invest a same fixed fraction of his current bankroll each time and
to keep in reserve a fixed fraction of his current capital.

The Kelly model will be discussed in the next sections.2 First, the case of
a single betting object is analyzed and then that of multiple betting objects,
as in a horse race with several horses. The appendix gives an introduction
to the Kuhn-Tucker conditions that will be needed to analyze the case of
multiple betting objects.

2. Kelly model with a single betting object

Consider the situation in which you can repeatedly make bets in a particular
game with a single betting object. The game is assumed to be favorable to
you, where favorable means that the expected value of the net payoff of the
game is positive. For every dollar staked on a repetition of the game, you
receive w1 dollars back with probability p and w2 dollars with probability
1 − p, where 0 < p < 1, w1 > 1 and 0 ≤ w2 < 1. The outcomes of the
successive games are assumed to be independent of each other. The key
assumption for the Kelly betting model is

Assumption: The parameters p, w1 and w2 satisfy pw1 + (1 − p)w2 > 1
and pw1 + (1− p)w2 − 1 < (w1 − 1)(1− w2).

The first condition says that the game is favorable to you in terms of one-
step expected value. It is noted that the first condition implies the second
condition if w2 = 0. You start with a certain bankroll, and it is assumed

2This model is named after the physicist John Kelly Jr. Working at Bell Labs, he
published in 1956 a paper titled A New Interpretation of Information Rate in the Bell
System Technical Journal. Virtually no one took much note of the article when it first
appeared. Nowadays it is widely used in gambling and investing. In the paper Kelly
posited a scenario in which a horse-race better has an edge: a ‘private wire’ of somewhat
reliable, but not perfect tips from inside information. How should he bet? Wager too
little, and the advantage is squandered. Too much, and ruin beckons. The Kelly bet size
is found by maximizing the expected value of the logarithm of wealth, which is equivalent
to maximizing the expected geometric growth rate. In the context of the St. Petersburg
paradox, it was already suggested by Daniel Bernoulli in 1738 that a gambler should not
maximize expected return but rather logarithmic utility.
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that you may stake any amount up to the size of your current bankroll each
time. If you want to maximize the growth rate of your bankroll over the
long run, the Kelly formula advises you to stake the following fixed fraction
α of your current bankroll each time:

α =
pw1 + (1− p)w2 − 1

(w1 − 1)(1− w2)
. (1)

This formula will be derived in the next section. Note that, by the assump-
tion made, 0 < α < 1. In the special case of w2 = 0, the Kelly formula (1)
reduces to

α =
pw1 − 1

w1 − 1
, (2)

which can be interpreted as the ratio of the expected net gain per staked
dollar and the payoff odds.

In the specific case of the investor with p = 0.5, w1 = 1.8 and w2 = 0.4,
the Kelly strategy requires him to invest a fraction 5

24 of his current bankroll
for each transaction. In practical terms, this renders a practically zero prob-
ability of his ending with 1.95 dollars or less after 52 weeks. Simulation re-
veals that applying the Kelly strategy would give the investor about a 70%
probability of ending with more than ten thousand dollars after 52 weeks,
and about a 44% probability of ending with more than twenty thousand
dollars.

The Kelly strategy was first used in casinos by mathematician Edward
Thorp, in order to try out his winning blackjack system. Later, Thorp and
a host of famous investors including Warren Buffett, successfully applied a
form of the Kelly strategy to guide their stock market decisions.

3. Derivation of the Kelly formula

The strategy is to bet a fixed fraction α of your current bankroll each time,
where 0 < α < 1. Here it is supposed that winnings are reinvested and that
your bankroll is infinitely divisible. Letting V0 be your starting bankroll,
define the random variable Vm as

Vm = the size of your bankroll after m bets.

For themth bet, let the random variableWm be equal to w1 with probability
p and be equal to w2 with probability 1−p. Noting that Vm = (1−α)Vm−1+
αVm−1Wm, it follows by induction that

Vm =
(
1− α+ αW1

)
× · · · ×

(
1− α+ αWm

)
V0 for m = 1, 2, . . . .

In mathematics, a growth process is most often described with the help of
an exponential function. This is the motivation to define the exponential
growth factor Gm via the relationship

Vm = V0e
mGm ,
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where e = 2.71828 . . . is the base of the natural logarithm. If you take the
logarithm of both sides of this equation, you see that the definition of Gm

is equivalent to

Gm =
1

m
ln

(
Vm

V0

)
.

Using the product formula for Vm and the fact that ln(ab) = ln(a) + ln(b),
you find

Gm =
1

m

[
ln
(
1− α+ αW1

)
+ · · ·+ ln

(
1− α+ αWm

)]
.

Next, we apply the law of large numbers, being one of the pillars of probabil-
ity theory. Since the random variables Xi = ln(1−α+αWi) form a sequence
of independent random variables having a common probability distribution,
the law of large numbers gives

lim
m→∞

Gm = E
[
ln(1− α+ αW )

]
with probability 1,

where the random variable W is equal to w1 with probability p and is equal
to w2 with probability 1−p. Thus the long-run growth rate of your bankroll
is equal to

lim
m→∞

Gm = p ln(1−α+αw1)+(1−p) ln(1−α+αw2) with probability 1.

Putting the derivative of g(α) = p ln(1−α+αw1) + (1− p) ln(1−α+αw2)
equal to 0, you get

p(w1 − 1)

1− α+ αw1
+

(1− p)(w2 − 1)

1− α+ αw2
= 0.

This gives the formula (1) after a little algebra. Since the second derivative
of g(α) is negative on (0, 1), the function g(α) is concave on (0, 1), and so
g(α) attains its absolute maximum for the value of α in (1).

Further results for the Kelly model with a single betting object are dis-
cussed in the book Tijms (2012) and the practice paper Yoder (2021). An
important issue is the volatility of your bankroll under the full Kelly strat-
egy. That’s why in practice one often uses a fractional betting fraction cα
rather than the full betting fraction α, where c is in the range 0.3−0.5.

4. Kelly betting with multiple betting objects

In investment situations and in sport events such as soccer matches and horse
races multiple investments or bets can be simultaneously done. Imagine that
opportunities to bet or invest arise at successive times t = 1, 2, . . .. There
are n betting objects j = 1, . . . , n, where n ≥ 2. You can simultaneously
bet on one or more of these objects.
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Assumption: (a). At any betting opportunity, only one betting object can be
successful (e.g. in a horse race only one horse can win), where object j will be
successful with a given probability pj and non-successful with probability 1−
pj, independently of what happened at earlier betting opportunities. Hereby

0 < pj < 1 for all j and
n∑

j=1

pj = 1.

(b). At any betting opportunity, a stake on each non-successful object j is
lost, while fj > 0 dollars are added to your bankroll for every dollar staked
on the successful object j. The payoffs fj are such that pjfj > 1 for at least
one object j and

∑n
j=1 1/fj ≥ 1.

The probabilities pj are typically subjective probabilities being different for
each person. For example, in horse racing you can imagine that your per-
sonal estimates of the win probability of the horses are different from the
bookmaker’s estimates. In the Assumption, the requirement

∑n
j=1 pj = 1

can be relaxed to
∑n

j=1 pj ≤ 1 (introduce then an auxiliary investment ob-
ject n+ 1 with fn+1 very close to 0 and pn+1 = 1−

∑n
i=1 pi).

You start with a certain bankroll V0 and the question is how to maximize
the long-run growth rate of your bankroll. The Kelly betting strategy is now
characterized by parameters α1, . . . , αn such that αi ≥ 0 for i = 1, . . . , n and∑n

i=1 αi ≤ 1. Under this strategy you stake the same fraction αi of your
current bankroll in object i each time, while you keep in reserve a fraction

β = 1−
n∑

i=1

αi

of your current bankroll. Denote by Vm the size of your bankroll after the
mth betting opportunity and let Gm = 1

m ln(Vm/V0) be the growth rate of
your bankroll over the first m betting opportunities. Using again the law of
large numbers, a generalization of the analysis in Section 3 leads to

lim
m→∞

Gm = E
[
ln
(
β +

n∑
i=1

αiRi

)]
with probability 1,

where the random vector (R1, . . . , Rn) has the joint probability distribution

P (Ri = fi, Rj = 0 for j ̸= i) = pi for i = 1, . . . , n.

Thus the long-run growth rate of your bankroll is equal to

lim
m→∞

Gm =
n∑

i=1

pi[ln(β + fiαi)] with probability 1. (3)
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The goal is to find the values for the αi’s such that the long-run growth
rate of your bankroll is maximal. Thus you have to solve the following
optimization problem:

Maximize f(β, α1, . . . , αn) =
∑n

i=1 pi ln(β + fiαi)

subject to β +
n∑

i=1

αi = 1

β, α1, . . . , αn ≥ 0.

The objective function f(β, α1, . . . , αn) is concave on the convex region of
feasible solutions of the optimization problem.3 An algorithm for the opti-
mal values of β and the αi’s can be derived from the specific Kuhn-Tucker
optimality conditions for a nonlinear optimization problem with linear con-
straints:

Maximize f(x1, . . . , xn)

subject to
∑n

j=1 aijxj = bi for i = 1, 2 . . . ,m,

xj ≥ 0 for j = 1, . . . , n.

If the objective function f(x1, . . . , xn) is differentiable and concave on the
convex set of feasible solutions of the optimization problem, the Kuhn-
Tucker conditions state that an absolute maximum is attained for the feasible
solution x∗ = (x∗1, . . . , x

∗
n) if real numbers λ∗

1, . . . , λ
∗
m (Lagrangian multipli-

ers) exist such that

∂f(x∗)

∂xj
−

m∑
i=1

λ∗
i aij ≤ 0 for j = 1, . . . , n,

x∗j

[∂f(x∗)
∂xj

−
m∑
i=1

λ∗
i aij

]
= 0 for j = 1, . . . , n,

n∑
j=1

aijx
∗
j = bi for i = 1, . . . ,m,

x∗j ≥ 0 for j = 1, . . . , n.

A proof of this result will be outlined in the Appendix.
By the Kuhn-Tucker conditions, non-negative values β, α1, . . . , αn satis-

fying β+
∑n

i=1 αi = 1 provide an optimal solution for the Kelly optimization

3Letting f(x, y) = ln(x + cy) for variables x, y > 0 and constant c > 0, it follows

that ∂2f
∂x2

∂2f
∂y2 − ( ∂2f

∂x∂y
)2 = 0 and ∂2f

∂x2 < 0, and so f(x, y) is concave in the two variables
x, y > 0. Using this result and the basic definition of concavity, it is now readily verified
that

∑n
i=1 pi ln(β + fiαi) is concave on the convex set of feasible solutions.
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problem if for some real number λ,

pifi
β + fiαi

− λ ≤ 0 for i = 1, . . . , n,

n∑
i=1

pi
β + fiαi

− λ ≤ 0,

αi

[ pifi
β + fiαi

− λ
]
= 0 for i = 1, . . . , n, β

[ n∑
i=1

pi
β + fiαi

− λ
]
= 0.

The first and the third condition give

pifi
β

− λ ≤ 0 if αi = 0 and
pifi

β + fiαi
− λ = 0 if αi > 0.

The key step is to assume that β > 0 in the optimal solution, that is, a
positive proportion of the bankroll is always kept in reserve. This premise
is reasonable in view of pj < 1 for all j. Then the fourth condition becomes∑n

i=1 pi/(β + fiαi) = λ, implying the second condition. Also, using the
condition

∑n
i=1 αi = 1− β, you easily verify that

β =
1−

∑
i∈V pi/λ

1−
∑

i∈V 1/fi
with V = {i | αi > 0}.

Next is matter of some manipulations to get λ = 1 and to arrive at the
algorithm for the optimal values of the αi’s. We omit the further details
and we suffice to give the final algorithm.

Algorithm

Step 0. Renumber the indexes such that p1f1 ≥ p2f2 ≥ . . . ≥ pnfn.

Step 1. Determine r as the largest integer k for which
∑k

j=1 1/fj < 1.

Step 2. Calculate for k = 1, . . . , r the test quantity

B(k) =
1−

∑k
j=1 pj

1−
∑k

j=1 1/fj
.

Stop at the first index k for which pk+1fk+1 ≤ B(k) (and then pjfj ≤ B(k)
for all j > k). Let s be this index and let β = B(s).

Step 3. Set αi = pi − β/fi for i = 1, . . . , s and αi = 0 for i > s.

The index r satisfies r < n, by part (b) of the Assumption made. This
implies that B(s) > 0. Therefore αi < pi for all i and so

∑n
i=1 αi < 1. This

verifies that β = 1−
∑n

i=1 αi > 0, that is, a positive fraction of your bankroll
is kept in reserve each time. It is also noted that for n = 1 the algorithm
boils down to the optimal betting fraction (p1f1− 1)/(f1− 1), in agreement
with the Kelly formula (2) for the case of a single betting object. Next we
give two numerical examples to illustrate the algorithm.
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Numerical examples

The Kelly strategy has been developed for situations in which many betting
opportunities repeat themselves under identical conditions. However, the
Kelly strategy provides also a useful heuristic guideline for situations with
only one betting opportunity.

Example 1. (soccer) Suppose that the soccer club Manchester United is
hosting a match against Liverpool, and that a bookmaker is paying out 4.5
times the stake if Liverpool wins, 4.5 times the stake if the match ends in
a draw, and 1.75 times the stake if Manchester United wins. You estimate
Liverpool’s chance of winning at 25%, the chance of the game ending in a
draw at 25%, and the chance of Manchester winning at 50%. If you are
prepared to bet 100 dollars, how should you bet on this match? The Kelly
betting model with n = 3 betting objects applies, where

p1 = 0.25 (win Liverpool), p2 = 0.25 (draw), p3 = 0.50 (win United)

f1 = f2 = 4.5 and f3 = 1.75.

Since p1f1 = p2f2 = 1.125 and p3f3 = 0.875, the condition p1f1 ≥ p2f2 ≥
p3f3 is satisfied. The algorithm goes as follows:

Step 1. Since 1/f1 =
10
45 , 1/f1 +1/f2 =

20
45 and 1/f1 +1/f2 +1/f3 > 1, the

index r = 2.

Step 2. B(1) = 27
28 , B(2) = 9

10 and p2f2 = 1.125 > B(1). This gives s = 2
with β = B(s) = 0.9.

Step 3. α1 = α2 = 0.25− 0.9
4.5 = 0.05 and α3 = 0.

Thus the Kelly strategy proposes that you stake 5% of your bankroll of
100 dollars on a win for Liverpool, 5% on a draw, and 0% on a win for
Manchester United. For this strategy, the subjective expected value of your
bankroll after the match is 100−10+0.25×4.5×5+0.25×4.5×5 = 101.25
dollars. The expected value of the percentage increase of your bankroll is
1.25%. The two concurrent bets on the soccer match act as a partial hedge
for each other, reducing the overall level of risk.4

Example 2. (horse race) In a horse race there are seven horses A, B, C ,
D , E, F and G with respective win probabilities 40%, 25%, 20%, 7%, 4%,
3% and 1% and payoff odds 1.625:1, 2.9:1, 4.5:1, 9:1, 14:1. 17:1 and 49:1.
Payoff odds a:1 means that in case of a win you will receive your stake plus
a dollars for each dollar staked. Numbering the horses A, B, C, D, E, F ,

4An interesting project would be to derive an algorithm for the case of simultaneous
betting options, where the outcomes of the bets are independent of each other and thus
more than one bet can be successful at the same time. Think of betting on a number of
soccer matches that are played at the same time. How should a gambler allocate the stakes
when the Kelly criterion of maximizing log-utility is used? This question is addressed in
Whitrow (2007).
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and G as 1 (= C), 2 (= A), 3 (= B), 4 (= D), 5 (= E), 6 (= F ), and 7
(= G), the Kelly model applies with

p1 = 0.2, p2 = 0.4, p3 = 0.25, p4 = 0.07, p5 = 0.04, p6 = 0.03, p7 = 0.01,

f1 = 5.5, f2 = 2.625, f3 = 3.9, f4 = 10, f5 = 15, f6 = 18, f7 = 50

satisfying the condition of decreasing values of the pifi’s:

p1f1 = 1.1, p2f2 = 1.05, p3f3 = 0.975, p4f4 = 0.7,

p5f5 = 0.6, p6f6 = 0.54, p7f7 = 0.50.

The algorithm goes as follows:

Step 1. The index r = 5 is the largest value of k for which
∑k

j=1 1/fj < 1.

Step 2. B(1) = 0.97778, B(2) = 0.91485, B(3) = 0.82956, B(4) = 0.98986
and B(5) = 2.82635. Also, p2f2 > B(1), p3f3 > B(2), but p4f4 ≤ B(3).
This gives s = 3 with β = B(s) = 0.82956.

Step 3. α1 = 0.0492, α2 = 0.0840, α3 = 0.0373, and αj = 0 for j > 3.

Thus you bet 8.4% of your bankroll on horse A, 3.7% on horse B, 4.9% on
horse C and nothing on the other horses. It is noteworthy that horse B is
included in your bet, even though a bet on horse B alone is not favorable
(p3f3 < 1). The expected value of the percentage increase of your bankroll
is 100×

∑3
j=1(pifiαi − αi) = 4.6%.
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Appendix: Kuhn-Tucker conditions

In this appendix an elementary derivation of the Kuhn-Tucker conditions
for nonlinear programming problems is given.

The most general form of a nonlinear programming problem is

max f(x)

subject to gi(x) ≤ bi for i = 1, 2, . . . ,m,

where x = (x1, . . . , xn) ∈ Rn represents the (decision) variables, m is the
number of constraints for the variables and the bi are given constants. The
set of feasible solutions is defined by

D = {x ∈ Rn : gi(x) ≤ bi for i = 1, 2, . . . ,m}.
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It is noted that the set D is convex if the gi(x)’s are convex functions.5 A
feasible solution x∗ ∈ D is said to be an optimal solution (global maximum)
for the nonlinear programming problem if f(x∗) ≥ f(x) for all x ∈ D.

For any λ = (λ1, . . . , λm) ∈ Rm, define the Lagrange function

L(x, λ) = f(x)−
m∑
i=1

λi(gi(x)− bi).

A very useful result is:

Theorem 1. Suppose that x∗ = (x∗1, . . . , x
∗
n) and λ∗ = (λ∗

1, . . . , λ
∗
m) satisfy

(i) gi(x
∗) ≤ bi for i = 1, 2, . . . ,m

(ii) L(x∗, λ∗) ≥ L(x, λ∗) for all x ∈ Rn

(iii) λ∗
i ≥ 0 for i = 1, 2, . . . ,m

(iv) λ∗
i {gi(x∗)− bi} = 0 for i = 1, . . . ,m.

Then x∗ is an optimal solution for the nonlinear programming problem.

Proof. The proof is simple. The first condition says that x∗ is a feasible
solution. Take any other feasible solution x. Then.

f(x∗)
(iv)
= f(x∗)−

m∑
i=1

λ∗
i

(
gi(x

∗)− bi

) (ii)

≥ f(x)−
m∑
i=1

λ∗
i

(
gi(x)− bi

) (iii)

≥ f(x).

The last inequality also uses that gi(x)− bi ≤ 0 for all i.

The λi are called the Lagrange multipliers and condition (iv) is called the
complementary slackness condition. In fact, Theorem 1 suggests a relaxation
approach in which you try to solve the difficult nonlinear programming prob-
lem by solving the unconstrained optimization problem max {L(x, λ) : x ∈
Rn} for given non-negative values of the Lagrange multipliers, where you try
to choose λ in such way the corresponding optimal solution x∗ satisfies the
conditions (i) and (iv) in Theorem 1. However, this very computationally
intensive approach is not practically useful for most problems.

Suppose now that the function f(x) is differentiable and concave, and the
functions gi(x) for i = 1, . . . ,m are differentiable and convex. Then, for any
given non-negative Lagrange multipliers λi, the Lagrange function L(x, λ)
is concave as function of x, as is easily verified by noting that a function −h
is concave if h is convex and that a finite sum of concave functions is also
concave. In this case condition (ii) is equivalent with

∇xL(x∗, λ) = 0.

5A nice treatment of convexity and concavity of functions of several variables can be
found in https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/cvn/t
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As consequence of Theorem 1, we now obtain the following important main
theorem in nonlinear programming:

Theorem 2. Suppose that the function f(x) is differentiable and concave,
and the functions gi(x) are differentiable and convex for i = 1, . . . ,m. If
x∗ = (x∗1, . . . , x

∗
n) and λ∗ = (λ∗

1, . . . , λ
∗
m) satisfy

(i) gi(x
∗) ≤ bi for i = 1, 2, . . . ,m

(ii)
∂f(x∗)

∂xj
−

m∑
i=1

λ∗
i

∂gi(x
∗)

∂xj
= 0 for j = 1, . . . , n

(iii) λ∗
i ≥ 0 for i = 1, 2, . . . ,m

(iv) λ∗
i {gi(x∗)− bi} = 0 for i = 1, . . . ,m.

Then x∗ is an optimal solution for the nonlinear programming problem.

The four conditions in Theorem 2 are called Kuhn-Tucker conditions. These
conditions generalize the optimality conditions for linear programming, where
the λi’s play the role of the dual variables. The Kuhn-Tucker conditions
stated in Section 4 for the nonlinear program with linear constraints are
rather easily derived from Theorem 2. To do so, note that linear functions
are convex, replace each non-negativity requirement xj ≥ 0 by the inequal-
ity gm+j(x) ≤ 0 with gm+j(x) = −xj , and replace each linear equality∑n

j=1 aijxj = bi by the two inequalities
∑n

j=1 aijxj ≤ bi and
∑n

j=1−aijxj ≤
−bi. The technical details of the derivation are left to the reader.

Remark. The Kuhn-Tucker conditions are the very foundation for several
computational methods for solving nonlinear programming problems, such
as the quadratic programming problem with a quadratic criterion function
and linear constraints. The Kuhn-Tucker conditions for quadratic program-
ming problems have a simple form that can make solutions considerably
easier to obtain than for general linear programming problems. Choosing
an algorithm for a nonlinear programming problem is often difficult be-
cause no one algorithm can be expected to work for every kind of nonlinear
programming problems. Software platforms as AIMMS, AMPL, GAMS,
Python and R include a number of optimizers for nonlinear programming
problems with the hope that one of these methods will suffice for the given
problem. It should be pointed out that in many problems it is difficult to
determine whether the objective function is concave in the feasible region
and hence it is difficult to guarantee convergence to a global optimum.
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