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Abstract. Almost without exception, behaviour, personality, and even socio-economic outcomes

have been shown to have a heritable component (i.e., genes help explain a certain proportion of

variation in such traits). As large-scale collection of genetic data becomes ever more affordable,

genetics plays an increasingly important role in the social sciences. The widespread availability

of raw genetic data creates exciting venues for development and application of new statistical

methods and econometric techniques. Application of such methods help us better understand

how differences and similarities between us are shaped. Here, I discuss the concepts of heritability

and genetic correlation. These parameters help us gauge to what extent the genetic information

that we can actually measure contributes to variation within traits and covariance between traits.

More specifically, as an example at the intersection of genetics and econometrics, I will explain a

method here, called MGREML (recently published in Communications Biology), that I developed

together with colleagues here in the Netherlands and abroad. MGREML enables researchers to

simultaneously estimate heritabilities and genetic correlations for many outcomes observed in

a large sample. As you will see, such methods rely heavily on matrix algebra, statistics, and

numerical methods—topics you all learn about in your training as econometrician!

Introduction

Imagine two individuals who have been exposed to highly similar environments in
childhood. Intuitively, we expect these individuals to be more similar in terms of
outcomes, such as educational attainment, than two individuals who have grown
up in very dissimilar environments. Put differently, environmental similarity (to
some degree) maps to similarity in a given outcome.

Such reasoning can easily be extended to the domain of genetic data, where
one could argue that genetic similarity also maps (again to a certain degree) to
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similarity in the outcome of interest. For example, we expect identical twins to
be more similar for all kinds of outcomes (e.g., hair colour, longevity, educational
attainment, etc.) than fraternal twins, siblings, nieces and nephews, and so on.
This expectation gives rise to the concept of heritability (h2): the proportion of
variance in an outcome that can be ‘explained’ by genes. Decades of studies using
data on twin pairs have revealed that basically any conceivable trait, characteristic,
or other outcome at the individual level has a heritable component (Polderman
et al., 2015).

The concept of heritability can be further generalised to a so-called genetic
correlation (rG ), which basically quantifies the degree to which genetic similarity
between two individuals, i and j , maps to similarity between outcome X for indi-
vidual i and outcome Y for individual j . More precisely, decomposing a trait as
the sum of a genetic and environmental component, genetic correlation is defined
as the correlation between GX and GY , where these are the genetic components
of outcome X and Y respectively. Genetic correlations, it turns out, are as om-
nipresent as correlations in general (e.g., see Bulik-Sullivan et al., 2015).

In the olden days, geneticists would use expected genetic similarity (based
on pedigree) to identify h2 and rG (Falconer and Mackay, 1996). For instance,
identical twins have an expected genetic similarity of one, while fraternal twins have
an expected genetic similarity of only 1/2. These differences in expected genetic
similarity can be used to glean h2 and rG (under a plethora of assumptions, of
course).

In recent years, however, directly measuring the genetic data for many individ-
uals has become quite affordable (e.g., see Loos, 2020), as illustrated by Figure
1. This direct availability of genetic data has paved the way for many exciting
applications, including estimation of h2 and rG directly from such genetic data,
even if we only have individuals who are (approximately) unrelated (Yang et al.,
2011; Lee et al., 2012).

Here, I discuss (1) how genetic data is typically measured, (2) what kind of
model is assumed to estimate h2 and rG . Next, I discuss (3) how we can use a form
of maximum-likelihood estimation (MLE) in conjunction with (4) an appropriate
multivariate model, matrix algebra, and numerical methods to make estimation
of these parameters scalable for large sample sizes (N) and a large number of
outcomes (T ). This overall approach is called MGREML (De Vlaming et al.,
2021). Finally, I will (5) highlight results from an application of MGREML to brain
data and related outcomes, such as educational attainment, using data from the
UK Biobank.
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Figure 1: The costs of genotyping over time. Source: National Human Genome Re-
search Institute, https://www.genome.gov/about-genomics/fact-sheets/

Sequencing-Human-Genome-cost.

1 Measuring genetic data

The human genome comprises roughly three billion so-called basepairs, many of
which contain identical information for all mankind: these ‘constant’ parts of the
DNA are what makes us human. The easiest way to conceptualise these basepairs is
using four letters from the alphabet: ‘A’, ‘C’, ‘G’, and ‘T’. Now, using this ‘genetic
alphabet’, the easiest way to think about the human genome is by considering it as
a humongous string which is a whopping three billion characters long, comprising
substrings such as “[...]ACGTCA[...]” as can been seen in Figure 2.

Notice, based on that figure, that DNA is a two-stranded molecule. One strand,
however, can safely be ‘ignored’ when reading the genetic data, as the two strands
are complementary to each other. That is, if at a given position in the DNA there
is an ‘A’ on the one strand then there must be a ‘T’ on the other strand (and vice
versa), and if there is a ‘C’ on the one strand there must be a ‘G’ on the other
(and vice versa). Thus, the string of letters “[...]ACGTCA[...]” on the one strand
corresponds to “[...]TGCAGT[...]” on the other, as can also be seen in Figure 2.
In other words: if you know the string that describes a given strand you also know
the string that describes the complementary strand.
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DNA (Deoxyribonucleic Acid) 

NATIONAL HUMAN GENOME RESEARCH INSTITUTE
Talking Glossary of Genetic Terms

NATIONAL INSTITUTES OF HEALTH | genome.gov Illustration by Darryl Leja, NHGRI

Figure 2: A short portion of DNA from a given chromosome. Source: National Hu-
man Genome Research Institute, http://www.genome.gov/glossary/index.

cfm?id=48.

These ‘genetic strings’ are located on chromosomes, 22 of which are regular
chromosomes and one of which is the so-called sex chromosome. For each chro-
mosome, you have two versions: one inherited from your mother and one from
your father. From hereon out, for simplicity, we ignore the sex chromosomes from
further discussion. The fact that you have inherited two versions of each chromo-
some effectively doubles the number of basepairs in your DNA, to about six billion
basepairs, as you have each unique basepair twice, viz., once on each of the two
versions of the given chromosome that you have inherited.

Importantly, once every so many basepairs, a bit of variation may occur across
the population. A form of genetic variation that is often studied is a so-called single-
nucleotide polymorphism (SNP; pronounced as snip). A SNP is a single basepair
in the genome where different ‘letters’ of the genetic alphabet are observed across
the population. For example, perhaps 75% of the population has a ‘G’ at the first
basepair on the first chromosome and 25% has an ‘A’ there. We then say this
position in the genome is a SNP with ‘G’ and ‘A’ as its alleles, where ‘A’ is the
minor allele (i.e., occurring least frequently). Although SNPs with three or even
four alleles can exist, such SNPs are far less common than SNPs with just two
alleles. Thus, much research focusses exclusively on these so-called biallelic SNPs.
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a

b

Genotype GG Genotype GA Genotype AA
# minor alleles = 0 # minor alleles = 1 # minor alleles = 2

Figure 3: Panel a: example of a SNP with two alleles, viz., ‘G’ (major allele)
and ‘A’ (minor allele). Panel b: example of the three different genotypes that
a given individual in the population can have for this SNP, viz., ‘GG’, ‘GA’ (or
equivalently ‘AG’), and ‘AA’. Source: Integrated Biobank of Luxembourg, https:
//www.ibbl.lu/wp-content/uploads/2012/07/SNPs.jpg. Edited by Ronald
de Vlaming.
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Panel a of Figure 3 shows the SNP in the example: at this location in the
DNA, two variants are seen in the upper strand across the population, viz., ‘G’
and ‘A’. The fact that you have two copies of each basepair (one on each of the two
chromosomes that form a pair) implies that you three unique so-called genotypes
for the SNP in the example: ‘GG’ (i.e., the ‘G’ allele on both chromosomes for the
given base pair), ‘GA’ or ‘AG’ (i.e., the ‘G’ allele on one chromosome and the ‘A’
allele on the other, for the given basepair), and finally ‘AA’. These three possible
genotypes are shown in Panel b of Figure 3.

Given (1) we consider only biallelic SNPs and (2) by setting one of its two
alleles as the so-called coded allele, we can thus reduce SNP data to simple counts
of the coded allele, with counts being equal to zero, one, or two. In the example, by
setting minor allele ‘A’ as the coded allele, the count is zero for the ‘GG’ genotype,
one for the ‘GA’ and ‘AG’ genotypes, and two for the ‘AA’ genotype. Now, for
each individual for whom we have collected data on biallelic SNPs, for each of
those SNPs, we effectively have this count.

In short, we have a clearly defined measure of genetic data on the molecular
level with a clear interpretation and a numerical value (zero, one, or two), making
this data highly suitable for various statistical analyses. And, perhaps most impor-
tantly, this measure can be inferred with great accuracy using affordable genotyping
platforms. What a marvel this is! We can measure the genotype of many individ-
uals with great precision, and the resulting data lend themselves extremely well for
statistical analyses.

2 Statistical model

Once the initial excitement has subsided a bit, you may find there is also a more
sobering aspect to working with genetic data: its sheer size! Just considering
SNPs with two alleles, there are already many millions of genetic variants, while
the largest samples are of the order of hundreds of thousands of individuals. Thus,
from a regression perspective, we have M potential regressors (SNPs) and N
individuals for whom we observe these SNPs, where M � N . That is, we are
solidly in the domain of multicollinearity and overfitting (e.g., see Friedman et al.,
2009). In other words, if we would use ordinary least squares to estimate the effect
of all SNPs jointly on a given outcome Y , it would fail spectacularly.

However, there are three important things to keep in mind here. First, genetic
variants (such as SNPs) that are very close to each other within the genome
tend to be strongly correlated. Thus, we only need to consider a broad subset of
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SNPs (called common variants) to ‘tag’ most of the variation in a trait that can
be explained by genes. Second, there is much evidence that for many outcomes,
ranging from diseases, to intelligence, personality traits, behaviour, and even socio-
economic outcomes, there are thousands of genetic variants that affect these traits,
all with small effects. This pattern is referred to as high polygenicity. Third,
there are many techniques to deal with M � N , two elegant approaches being
the imposition of (1) a reasonable prior on the distribution of the effects of the
regressors and (2) a penalty on the effects of the regressors in the loss function
of interest (e.g., in the definition of the sum of squared regression residuals). In
fact, maximum a posteriori estimates obtained under certain priors can be shown
to be mathematically equivalent to simply imposing an appropriate penalty in the
loss function (e.g., see De Vlaming and Groenen, 2015).

An important prior is the so-called infinitesimal model, where each SNP is
assumed to have a very small effect, with mean zero, where some effects are
slightly negative and others slightly positive. This prior, in fact, aligns rather
neatly with the high polygenicity of outcomes, a conceptual model for which there
is much evidence (Visscher et al., 2017). More specifically, we typically assume
the following model holds for a normally distributed continuous outcome Y :

y = Gβ + ε (1)

β ∼ N
(
0, IMσ

2
β

)
(2)

ε ∼ N
(
0, INσ

2
E

)
. (3)

In this model, y denotes the N × 1 outcome vector and IN denotes the N × N
identity matrix. The main parameters here are σ2

β and σ2
E . The distribution of y

can now be written quite compactly as follows:

y ∼ N
(
0,GGTσ2

β + INσ
2
E

)
. (4)

Now, defining A = M−1GGT and σ2
G = Mσ2

β, we can rewrite the model for y as
follows:

y ∼ N
(
0,Aσ2

G + INσ
2
E

)
. (5)

Matrix A is often referred to as the genomic-relatedness matrix (GRM). Impor-
tantly, as SNPs are standardised, the diagonal element of A are approximately
equal to one. Notice that the off-diagonal elements of A basically quantify how
similar two given individuals are in terms of their SNP data.

The fact that the diagonal elements are (approximately) equal to one implies
that, under this model, the variance in Y for each individual i = 1, ... ,N can
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be decomposed as σ2
G + σ2

E , where σ2
G is the so-called additive genetic variance

explained by SNPs and σ2
E the residual or environmental variance. Now, SNP-based

heritability is defined as

h2SNP =
σ2
G

σ2
G + σ2

E

. (6)

Given a GRM A, derived from SNP data, and an outcome vector y, one could use
MLE to estimate σ2

G and σ2
E . Here, MLE aims to find values for the parameters

such that the following function is maximised:

`(σ2
G ,σ2

E ) = −1

2

(
N log (2π) + log

∣∣Aσ2
G + INσ

2
E

∣∣+ yT
(
Aσ2

G + INσ
2
E

)−1
y
)

(7)

3 Restricted maximum likelihood estimation

For a given outcome, there are often certain factors that we want to control for,
as our results could otherwise suffer from an omitted-variable bias. If we have
an N × K matrix of covariates, X, that we want to take into account, the most
straightforward way to incorporate this in our model is by changing Equation 1, by
assigning so-called fixed effects, γ, to X as follows:

y = Xγ + Gβ + ε. (8)

In this model, we thus a have a mix of linear fixed effects, γ, and linear random
effects, β. Therefore, this type of model is often referred to as a linear mixed model
(LMM). Please keep in mind that the ‘fixed’ and ‘random’ effects as mentioned here
and elsewhere in the literature on LMMs are conceptually different from random
and fixed effects as often seen in the literature on panel data!

By using properties of the multivariate normal distribution, we can show that
the outcome of interest is distributed as follows under this model:

y ∼ N
(
Xγ,Aσ2

G + INσ
2
E

)
. (9)

Now, one could formulate the log-likelihood function in terms of σ2
G , σ2

E , and γ and
apply MLE. However, there is a downside there: when estimating these so-called
variance components σ2

G and σ2
E (i.e., parameters that shape the variance matrix),

these tend to get underestimated by MLE, as MLE fails to take the degrees of
freedom lost by controlling for X into account.

However, there exists an alternative approach that takes the lost degrees of
freedom into account. This approach is called restricted maximum likelihood
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(REML) estimation. Effectively, REML applies maximum likelihood estimation
to PTy instead of y, where P is an N × (N − k) matrix, such that PTX = 0,
where k = rank (X) and rank (P) = N − k . Consequently, P accounts for the lost
degrees of freedom by changing the ‘effective’ sample size and by ‘partialing out’
the fixed effects, as the columns of P all lie in the left null space of X.

Importantly, REML does not make this transformation explicit. Rather, the
transformation is subsumed in the formulation of the corresponding log-likelihood
function which is defined as follows (up to a constant):

` = −1

2

(
log |V|+ log

∣∣XTV−1X
∣∣+ yTMy

)
, where (10)

M = V−1 − V−1X
(
XTV−1X

)
XTV−1 and (11)

V = Aσ2
G + INσ

2
E . (12)

Now, numerical methods (such as Newton’s method) can be used to find values
for σ2

G and σ2
E that maximise the REML function. This approach of estimating the

variance accounted for by all available SNPs is called genomic-relatedness restricted
maximum likelihood (GREML) estimation.

4 Multivariate GREML

Let yt denote the N × 1 outcome vector for trait t = 1, ... ,T and let Xt denote
the corresponding N × Kt matrix of covariates with fixed effects in Kt × 1 vector
γt . Now, the univariate model can be generalised to a multivariate model on
T outcomes observed in the same set of N individuals fairly straightforwardly as
follows:

vec (Y) =

 y1
...
yT

 ∼ N

 X1 0

. . .

0 XT


 γ1

...
γT

 ,VG ⊗ A + VE ⊗ IN

 ,

(13)
where Y = (y1 ... yT ) is the N × T matrix of outcomes and

VG =

 σG11 ... σG1T

...
. . .

...
σG1T

... σGTT

 , and VE =

 σE11 ... σE1T

...
. . .

...
σE1T

... σETT

 . (14)

Here, vec (·) denotes the vectorisation operator and ‘⊗’ the Kronecker product.
In this model, σGts is the genetic covariance between traits t and s, and σEts the
environmental covariance for the corresponding two traits.
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We can now define SNP-based heritability of trait t and the genetic correlation
between traits t and s as follows under this model:

h2SNP(t) =
σGtt

σGtt + σEtt

and (15)

rG (t, s) =
σGts√
σGtsσGts

. (16)

Notice that the grand variance matrix, VG⊗A+VE⊗IN , is a full NT×NT matrix.
Thus, a näıve application of REML (which involves the log-determinant and inverse
of that matrix) is computationally prohibitive, as it would require O(N3T 3) time
per iteration, just to calculate the log-likelihood.

Importantly, however, the GRM is a symmetric positive (semi)-definite matrix,
and as such as has eigenvalue decomposition given by A = QDQT, where D
is a diagonal matrix with non-negative diagonal entries and Q is an orthonormal
matrix (i.e., such that QQT = QTQ = IN). As a consequence, when we consider
vec
(
QTY

)
as grand outcome vector, instead of vec (Y), the following model should

then hold:

vec
(
QTY

)
∼ N


 QTX1 0

. . .

0 QTXT


 γ1

...
γT

 ,VG ⊗D + VE ⊗ IN

 .

(17)

Now, observe that the grand variance matrix, VG ⊗D+VE ⊗ IN , is highly sparse.
Yet, this sparsity is spread over many rows and columns. However, by using a
so-called commutation matrix (which effectively re-orders data by individual rather
than by trait), denoted by C, which is such that Cvec

(
QTY

)
= vec

(
YTQ

)
and

C(B ⊗ E)CT = E ⊗ B for B and E of appropriate sizes, we obtain the following
model:

vec
(
YTQ

)
∼ N

C

 QTX1 0
. . .

0 QTXT


 γ1

...
γT

 ,D⊗ VG + IN ⊗ VE

 .

(18)

Although the matrix of fixed-effect covariates now looks a bit clunky, crucially,
the variance matrix has a greatly reduced complexity: it is now completely block
diagonal. That is, there are N diagonal blocks, where each block is a full T × T
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matrix, with block i given by diVG + VE , where di is the i -th diagonal element
from D for i = 1, ... ,N .

The reason why a block-diagonal variance matrix is so useful is that computing
the determinant and inverse of this grand NT ×NT variance matrix is now only as
difficult as computing the determinant and inverse of each of the N non-overlapping
blocks. Thus, effectively, these calculations now have a time complexity that goes
up linearly with sample size, N , instead of going up at an N3 rate.

From this point on, further matrix-algebraic tricks can be used to compute the
complete log-likelihood in O(NT 2) time. Similarly, in the publication in Communi-
cations Biology , I show that even the gradient can be calculated in O(NT 2) time
(De Vlaming et al., 2021).

Importantly, to find the parameter estimates that maximise the REML function,
we need a suitable numerical method, as there exists no analytical solution. Un-
fortunately, Newton’s method works poorly here for two reasons: (1) the Hessian
becomes computationally prohibitively expensive when T is large, as the number
of parameters scales quadratically with the number of the traits T and, thus, the
Hessian has O(T 4) unique elements that all need to be calculated in each iteration,
and (2) there may be many points in the parameter space where the Hessian is
(nearly) rank deficient, yielding numerically unstable updates.

We can resolve both issues by applying a Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm (e.g., see Fletcher, 1987), which is a so-called quasi-Newton
approach. This widely used algorithm iteratively constructs a numerically stable
approximation of the inverse of the Hessian using little more than the gradient
from several subsequent iterations. To ensure each step guarantees an increase
in the REML function, we combine the BFGS algorithm with a simple line-search
method that is applied in each iteration.

The overall approach of estimating the genetic and environmental variance
matrix, VG and VE , for a set of T traits observed in a set of N individuals, using
these numerical techniques, we refer to as MGREML. This technique is available
as command-line tool here on GitHub.

Naturally, there are many more details that I would like to describe about
this method. But these are best left to the manuscript itself, available as open-
access article in Communications Biology . Detailed derivations of the method are
available as “Supplementary Information” (De Vlaming et al., 2021).
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5 An application: brain morphology

In the study highlighted here, I applied MGREML, implemented as command-
line tool using Python 3.x, to data from the UK Biobank (UKB). In the UKB,
genotypes were collected for hundreds of thousands of UK residents. Amongst
many other traits, the UKB data comprises brain-scan data. These data can be
used to calculate so-called grey-matter volume in various regions of the brain.

After stringent quality control (i.e., dropping individuals, trais, and SNPs that
were problematic or incomplete), we were left with a set of T = 86 traits, of
which 76 were directly related to brain morphology, observed in N = 20, 190
individuals. MGREML estimation required 324 BFGS iterations to converge. In
total, estimation of the full set of 86 SNP-based heritabilities and 86× 85× 1/2 =
3, 655 unique genetic correlations took about one hour.

To illustrate some of the results, Figure 4 shows the average SNP-based her-
itability for various sets of brain regions (Panel a), as well as the full genetic
correlation matrix (shown as a heatmap in Panel b) for the brain-related traits.
Results align strongly with standard anatomical subdivisions in the brain. A de-
tailed description of these empirical results can also be found in the manuscript in
Communications Biology .

In addition, simulation results show that MGREML currently is the most effi-
cient tool to simultaneously estimate many SNP-based heritabilities and genetic
correlations. Moreover, these simulations corroborate the consistency of its esti-
mates.

Wrapping up, the take-home message of all this (at least to me, at a personal
level) is the following: in the age of big data, there are many fields where you, as
econometrician, can apply your skills. These fields may even include really unex-
pected areas, like quantitative genetics. Such serendipitous applications of skills
and knowledge are, of course, what makes interdisciplinary research so exciting!
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